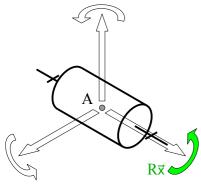
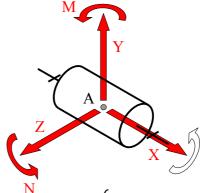
Actions mécaniques dans les liaisons

On peut déterminer les composantes d'une action mécanique transmissible par une liaison à partir des mouvements que cette liaison autorise.

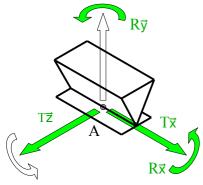

<u>Hypothèse</u>: Les liaisons sont parfaites

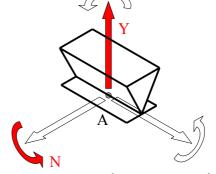
- géométrie parfaite
- frottements négligés


<u>Principe</u>: Si un mouvement est autorisé par la liaison, il ne peut pas transmettre d'effort dans celle-ci. (sauf pour la liaison hélicoïdale*)

Exemples:

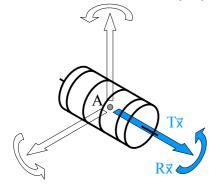
• <u>Liaison pivot d'axe (A\vec{x})</u>:

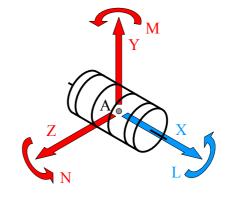

	Tr	Rot
x	0	1
ÿ	0	0
Ż	0	0


	Res	M_t
Χ̈́	1	0
ÿ	1	1
Ż	1	1

$$\{ \mathscr{T} (1 \to 2) \} = \begin{cases} X_{(1 \to 2)} & 0 \\ Y_{(1 \to 2)} & M_{(1 \to 2)} \\ Z_{(1 \to 2)} & N_{(1 \to 2)} \end{cases}_{ds R}$$

• <u>Liaison linéaire rectiligne d'axe(A\vec{x}) et de normale (A\vec{y})</u>:


	T_{r}	Rot
x	1	1
ÿ	0	1
Ż	1	0


	Res	M _t
\vec{x}	0	0
ÿ	1	0
Ż	0	1

$$\{ \mathcal{T}(1 \to 2) \} = \begin{cases} 0 & 0 \\ Y_{(1 \to 2)} & 0 \\ 0 & N_{(1 \to 2)} \end{cases}_{ds R}$$

• Liaison hélicoïdale d'axe(AX)*:

	T_{r}	Rot
\vec{x}	1*	1*
ÿ	0	0
Ż	0	0

	Res	M_t
\vec{x}	1*	1*
ÿ	1	1
Ż	1	1

Particularité de la liaison hélicoïdale:

Les mouvements de rotation et de translation sont liés.

Il en est de même pour la résultante et le moment avec la relation: $L_{(1\to 2)} = k \cdot X_{(1\to 2)}$ où k est le pas cinématique, et p, le pas